If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+40x=112
We move all terms to the left:
8x^2+40x-(112)=0
a = 8; b = 40; c = -112;
Δ = b2-4ac
Δ = 402-4·8·(-112)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-72}{2*8}=\frac{-112}{16} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+72}{2*8}=\frac{32}{16} =2 $
| 40x+1=15/6 | | -24=4n+2n | | 2x+11+90+7x-6=180 | | 16=g/2 | | -4(u-83)=-64 | | 9(2x+ 11)=14x+36 | | 10x+0+12x-26=180 | | 3/4n=11/8 | | q+13/10=2 | | n/15=180 | | 120=(180(n-2))/n | | 8^5x=4^4x+7 | | n-7.13=14 | | 7x+1+90+15x-8=180 | | 7x+-1+90+15x-8=180 | | h/7+80=88 | | 8=3m-1 | | 4x-8-3x+3=180 | | 1-8p=7 | | x+129=2 | | 5+9x=3+17x | | 2t+-6=26 | | 2-2(x+8)=30 | | x+32=2x-30 | | -6u-36=-42 | | 8h+4=32 | | -1.2+y=4.88 | | 5n+3=1/9 | | 3n-2=n/3 | | 4.8x6.4=21.76 | | c=π*11 | | x×34=(5×30)+(5×X) |